10 research outputs found

    Self-localizing Smart Cameras and Their Applications

    Get PDF
    As the prices of cameras and computing elements continue to fall, it has become increasingly attractive to consider the deployment of smart camera networks. These networks would be composed of small, networked computers equipped with inexpensive image sensors. Such networks could be employed in a wide range of applications including surveillance, robotics and 3D scene reconstruction. One critical problem that must be addressed before such systems can be deployed effectively is the issue of localization. That is, in order to take full advantage of the images gathered from multiple vantage points it is helpful to know how the cameras in the scene are positioned and oriented with respect to each other. To address the localization problem we have proposed a novel approach to localizing networks of embedded cameras and sensors. In this scheme the cameras and the nodes are equipped with controllable light sources (either visible or infrared) which are used for signaling. Each camera node can then automatically determine the bearing to all the nodes that are visible from its vantage point. By fusing these measurements with the measurements obtained from onboard accelerometers, the camera nodes are able to determine the relative positions and orientations of other nodes in the network. This localization technology can serve as a basic capability on which higher level applications can be built. The method could be used to automatically survey the locations of sensors of interest, to implement distributed surveillance systems or to analyze the structure of a scene based on the images obtained from multiple registered vantage points. It also provides a mechanism for integrating the imagery obtained from the cameras with the measurements obtained from distributed sensors. We have successfully used our custom made self localizing smart camera networks to implement a novel decentralized target tracking algorithm, create an ad-hoc range finder and localize the components of a self assembling modular robot

    Using Smart Cameras to Localize Self-Assembling Modular Robots

    Get PDF
    In order to realize the goal of self assembling or self reconfiguring modular robots the constituent modules in the system need to be able to gauge their position and orientation with respect to each other. This paper describes an approach to solving this localization problem by equipping each of the modules in the ensemble with a smart camera system. The paper describes one implementation of this scheme on a modular robotic system and discusses the results of a self assembly experiment

    Towards Robotic Self-reassembly After Explosion

    Get PDF
    Abstract — This paper introduces a new challenge problem, designing robotic systems to recover after disassembly from high energy events. Implementation of a camera-based localization algorithm for self-reassembly is discussed. The control architecture for the various states of the robot, from fully-assembled to the modes for sequential docking, are explained and inter-module communication details for the robotic system are described. T I
    corecore